Radio, Wireless & Cellular Telemetry

Telemetry is the highly automated communications process by which measurements are made and other data collected at remote or inaccessible points and transmitted to receiving equipment for monitoring. Although the term commonly refers to wireless data transfer mechanisms (e.g., using radio, ultrasonic, or infrared systems), it also encompasses data transferred over other media such as a telephone or computer network, optical link or other wired communications like phase line carriers. Many modern telemetry systems take advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit telemetry data.

A telemeter is a device used to remotely measure any quantity. It consists of a sensor, a transmission path, and a display, recording, or control device. Telemeters are the physical devices used in telemetry. Electronic devices are widely used in telemetry and can be wireless or hard-wired, analog or digital. Other technologies are also possible, such as mechanical, hydraulic and optical.

Telemetry is important in water management, including water quality and stream gauging functions. Major applications include AMR (automatic meter reading), groundwater monitoring, leak detection in distribution pipelines and equipment surveillance. Having data available in almost real time allows quick reactions to events in the field. Telemetry control allows for intervention of assets such as pumps and allows to remotely switch pumps on or off depending on the circumstances. Many resources need to be distributed over wide areas. Telemetry is useful in these cases, since it allows the system to channel resources where they are needed; examples of this are tank farms in gasoline refineries and chemical plants.

Machine to Machine (M2M) refers to technologies that allow both wireless and wired systems to communicate with other devices of the same type. M2M is a broad term as it does not pinpoint specific wireless or wired networking, information and communications technology. M2M is considered an integral part of the Internet of Things (IoT) and brings several benefits to industry and business in general as it has a wide range of applications in industrial automation mostly for monitoring but also for control purposes.

M2M can include the case of industrial instrumentation – comprising a device (such as a sensor or meter) to capture an event (such as temperature, inventory level, etc.) that is relayed through a network (wireless, wired or hybrid) to an application (software program) that translates the captured event into meaningful information (for example, items need to be restocked). Modern M2M communication has expanded beyond a one-to-one connection and changed into a system of networks that transmits data to personal appliances. The expansion of IP networks across the world has made it far easier for M2M communication to take place and has lessened the amount of power and time necessary for information to be communicated between machines.

The industrial M2M market is undergoing a fast transformation as enterprises are increasingly realizing the value of connecting geographically dispersed people, devices, sensors and machines to corporate networks. Today, industries such as oil and gas, precision agriculture, military, government, smart cities/municipalities, manufacturing, and public utilities, among others, utilize M2M technologies for a myriad of applications.

Portland Engineering works extensively with Radio, Wireless, & Cellular Telemetry in a variety of industrial and automated control capacities, and we are industry leaders in M2M cellular telemetry for industrial applications.


Advanced Control | Automated Assembly | Batch Control & Batch Processing | Computer Aided Design (CAD) & Computer Aided Manufacturing (CAM) | Cloud Based Applications & Software | Control System Design | Control Panel Design | Data Processing, Collection, Reporting, Management & Analytics | Distributed Control Systems (DCS) & DCS Migration | Dedicated Controls | Discrete Control | Energy Management | Ethernet/IP | Factory Automation | Fault tolerant Systems | Field Service | Flow Control | HMI/OI | Industrial Engineering | Industrial Ethernet | Information Integration | Information Systems | Input & Output Modules | Installation & Startup | Level Control | Machine Design, Control, Repair & Maintenance | Manufacturing Execution Systems (MES) | Modbus TCP | Motors, Drives & Motion Control | Networking & Communications | Programmable Automation Controllers (PACs) | Programmable Logic Controllers (PLCs) | Pressure Control | Process Control | Process Engineering | Product Tracking, Identification, RFID, Barcodes & Matrix Codes | Profibus & Profinet | Project Management | Pumps, Compressors & Turbines | Supervisory Control and Data Acquisition (SCADA) Systems | Sensors | Systems Engineering | Radio, Wireless & Cellular Telemetry | Temperature Control | Maintenance Training & Education | Operations Training & Education | Virutalization | Wireless | Wireless Ethernet